
Why use write-through? Doesn't that degrade the performance, defeating the
purpose of a RAM disk?

Writing through does cause a performance hit when writing to a RAM disk, 
but it maintains a safe RAM disk image file by ensuring that changes are 
written to a real disk file. Furthermore, reading from the RAM disk is where 
the greatest benefit occurs, since reading only looks at the RAM disk and has
no need to access the RAM disk image file. A typical real-world example is 
compiling and linking an application. A compiler has to read all the files it 
compiles, some repeatedly, and writes a relatively small amount. By enabling
the write-through feature of ramBunctious, you gain the advantage of fast 
reads from a RAM disk while maintaining the security of having new 
information in a real file on a real hard drive in the real world.

Can ramBunctious be used to feed the hungry, heal the sick, stop wars, and 
guarantee equal justice for all?

Yes. But the explanation is complex; if we gave a full explanation, the only 
people who would understand the answer would be you and us.

What are some typical uses for RAM disks?

Since we're software engineers, our typical uses for ramBunctious are heavily
development-oriented. We typically have auto-mount enabled because we 
work on the same projects for days, weeks, or months at a time. We use disk-
based RAM disks with write-through enabled to ensure that if our machines 
crash our projects are still safe. Bob occasionally customizes a RAM disk that 
is RAM-only for temporary files such as object files needed only until the 
project is linked, or for downloading programs from the internet to see if he 
likes them. All of Bob's RAM disks have the status windows open, but shrunk 
so only the disk activity icons are visible. Bob likes the new "Startup Items" 
feature. He has one RAM disk (write-through) that has source code; the 
startup items folder contains an alias to a second RAM disk image file. The 
second RAM disk (save-on-quit) has the project file on it, and an alias to the 
project file in the startup items folder. So when the source code RAM disk is 
started, the project RAM disk is automatically mounted and the system is 
ready for development. Elden typically has write-through enabled, and the 
status windows are kept closed; since he has hundreds of files, he likes the 
low file storage overhead provided by a RAM disk.

What was changed in ramBunctious version 1.1.2?

ramBunctious 1.1.2 was a bug fix release. System 7.6.1 introduced a conflict 
with huge FSWrite's on some configurations. ramBunctious now implements 
huge FSWrite's as a series of smaller FSWrite's to avoid the problem.



There was a tiny tweak made to Balloon Help.

What was changed in ramBunctious version 1.1.1?

ramBunctious 1.1.1 is primarily a maintenance release; a few bugs were 
fixed, and some incompatibilities were identified.

A conflict with Directory Assistant was identified -- see the Known 
Incompatibilities section.

Now the delete keys work in the "Enter RAM disk size" dialog.

The single feature that was added was a "Put Away" menu item in the File 
menu. This allows you to put away the RAM disk whose window is frontmost. 
You can still put away individual RAM disks via the RAM Disk menu, but now 
you can accomplish more with keyboard shortcuts, and you don't have to 
navigate through hierarchical menus.

What features were added in ramBunctious version 1.1?

The ramBunctious RAM disk driver was further optimized; it is now up to 30%
faster than Apple's built-in RAM disk control panel.

ramBunctious now looks for a "Startup Items" folder on a newly-mounted 
RAM disk. It then tells Finder to open all the items in that folder. This can be a
very convenient feature. For example, if you use a 2.2 MB RAM disk as a 
Netscape cache, you could include an alias to Netscape in the startup items 
folder. Then, when you're ready to hit the Web, you could start the RAM disk 
and Netscape would be launched automatically. If you want to temporarily 
disable this feature, hold down the "Shift" key while mounting the RAM disk.

ramBunctious is now a fat application; it runs natively on PowerPC Macs as 
well as 68K Macs.

A major focus for this update was to enhance ramBunctious's robustness. 
This involved several architectural modifications; these aren't visible, but the
underlying code is more stable and will be easier to modify for future 
maintenance. For example, there are no more hard-coded string messages. 
All strings are now in 'STR#' resources, which will greatly simplify 
localization. Another example is a new ExitToShell() patch to guarantee that 
even if ramBunctious is forcibly exited, there will be no data integrity 
problem.

ramBunctious now uses Infinity Windoids for the settings windows. Thanks, 
Troy Gaul, for great-looking, easy-to-implement windoids.



There are a few minor user interface enhancements in this version. For 
example, there is a "Save Now" button in the settings window, and a "Save" 
menu item. The process for creating a new RAM disk has been streamlined as
well; there's one dialog involved, and it includes a popup menu with common
default RAM disk sizes. The write-through icon in the settings window now 
also indicates when the volume is "dirty". This dirty indicator can be a useful 
piece of information, especially if you want to perform a write-through 
manually on a save-on-quit RAM disk.

When a RAM disk is being initialized, a window now indicates the status. This 
is useful because, especially with large RAM disks, the startup process can 
take several seconds, and it's comforting to know precisely what the 
computer is doing during that time.


